
Dynamics of Perceptual Bistability
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w/ N Rubin, A Shpiro, R Curtu, R Moreno

What do we perceive when confronted with 
ambiguous sensory stimuli?

Bradley et al, 1998



Mutual inhibition with 
slow adaptation 

alternating dominance 
and suppression

IV:

Levelt, 1968



Dynamics of Perceptual Bistability

w/ N Rubin, A Shpiro, R Curtu, R Moreno

• Oscillator models – inhibition + slow negative feedback 
-- noise gives randomness to period
-- non-monotonic T vs stimulus
-- reconsider the experimental findings, or the models

• Attractor model (Moreno)  
– noise driven, no oscillation w/o noise
-- double-well potential motivates neural architecture
-- monotonic T vs stimulus

• Oscillator/attractor “regime” in the continuum
-- stats of T distribution constrain parameters



Oscillator Models for Directly Competing Populations

w/ N Rubin, A Shpiro, R Curtu

Two mutually inhibitory populations, corresponding to each percept.
Firing rate model:  r1

 

(t), r2

 

(t) 
Slow negative feedback: adaptation or synaptic depression.

Wilson 2003; Laing and Chow 2003
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Alternating firing rates Adaptation slowly grows/decays
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Five Regimes of 
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Five Regimes of Behavior, Common to Neuronal Competition Models
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Five Regimes of 
Behavior,
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Math –

 

adaptation case:

If adaptation is slow and inhib’n

 

is sufficient

then Hopf

 

bifur’cns

 

(2 of them) are 
supercritical and to anti-phase oscill’n.

If inhibition is strong, given adaptation,

then also get pitchfork bifurcations.
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Fast-Slow dissection:  r1 , r2 fast variables
a1 , a2 slow variables
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Fast/Slow  Dynamics

a1 , a2 frozen
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r1 -r2 phase plane, slowly drifting nullclines
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Switching occurs when a1 -a2
traj reaches a curve of SNs (knees) 

At a switch:  
• saddle-node in fast dynamics.
• dominant r is high while system rides
near “threshold”of suppressed populn’s
nullcline ESCAPE.
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r1

r2

RELEASE:  
At a switch:  suppressed r is very low 
while system rides near “threshold”
of dominant populn’s nullcline
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RELEASE:  
At a switch:  suppressed r is very low 
while system rides near “threshold”
of dominant populn’s nullcliner1
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β

Small I, “release”

Switching due to adaptation:
release or escape mechanism
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Recurrent excitation, secures “escape”
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Noise-Driven Attractor Models
w/ R Moreno, N Rubin



Noise-Driven Attractor Models
w/ R Moreno, N Rubin

J Neurophys 2007

No oscillations if
noise is absent.

Kramers

 

1940 



LP-IV in an attractor model
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WTA
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Compare dynamical skeletons: “oscillator”

 

and attractor-based models
Recurrent
excitation



Dynamical properties of a network with
spiking neurons. Simulation results.

Levelt II

distribution

100 LIF neurons



Noise-free

Observed variability and mean duration constrain the model.

1 sec <  mean T    < 10 sec

0.4  <  CV  <  0.6

With noise

Difficult to arrange high CV and
high <T> in OSC regime.



With noise

Favored:  noise-driven attractor with weak adaptation –

 

but not
far from oscillator regime.



Best fit distribution depends on parameter values.

I1

 

,  I2

 

= 0.6

Noise dominated

Adaptation

 

dominated



Asymmetries may bias model toward LP-IV.
Gain fn:  steep foot  favors “escape”, LP-IV.

Sigmoidal

 

a∞

 

(u) …

 

favors monotonic T vs

 

I…

 

but becomes non-monotonic w/ noise.



• Reverse correlation: Switch-triggered average of noise.
• On average, positive noise to popul’n that becomes dominant and 
negative noise to popul’n becoming suppressed.

Time course of noise that causes switching.

Positive noise, on average, induces switch from suppressed to dominant.

…”coincident with”

 

negative noise to 
dominant population.



Lankheet, J Vision, 2006
STAs

 

for Binocular Rivalry: Experiment with moving dots
30% of dots move coherently

In Lankheet

 

expt, coherence varies randomly –
50% on average move coherently:
NW for left eye, NE for right eye

Switch triggered averages.

Becoming dominant 

Note: this is external (sensory input) noise as opposed
to internal (brain) noise.



Transparent + different freq.

Transparent + very different 
frequency.

Percent dominance reflects brain’s estimate 
of probability of depth.

V

grating 1



SUMMARY
Oscillator models:

•

 

predict new, non-Levelt

 

(LP-IV),  behaviors –

 

non-monotonic 
dominance duration vs

 

I1

 

, I2
•

 

Winner-take-all alternation w/ noise; but non-monotonicity T vs
stimulus,  remains.

• New experiments  … we see only monotonic, and weakly 
decreasing T vs stimulus.

Noise-driven attractor model (Moreno):

•

 

Energy, rate-based and spiking network models conform to LP-IV, 
LP-II.

•

 

Architecture: 
-An excitatory pool receives total external and internal inputs.
-Local inhibition and non-linear total input/local rate interaction.

•

 

Extendable to N-stable phenomena.

Swartz Foundation and NEI grants.
Statistics constrains the models…

 

noise-driven attractor but near OSC regime.



Obtaining LP-IV and LP-II in attractor models

TA

gB

TB

gA = gB

TA = TB



gA

 

= gB

 

gB

 

< gA

Increases residence time for AON

 

and 
decrease it for BON

 

….  analogous to LP-II.

BON

AON

TA

gB

TB

With noise
it would…



Comparison with experimental results

Polonsky et al, 2000
V1, V2, V3a, V4v, in humans

(also Lee and Blake, 2002
V1, V2, V3, V4, in humans)

Sheinberg and Logothetis, 1997
STS and IT in monkeys

Presenter
Presentation Notes
Blake says that there is not reduction of activity in the up state. But his data supports that!



Reduction of activity during rivalry 
compared with non-rivaling stimulation





r1
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RELEASE:  
At a switch:  suppressed r is very low 
while system rides near “threshold”
of dominant populn’s nullcline
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Outline
Demos and basic exptl results (Levelt)
Oscillator models – noise gives randomness to period

-- inhib’n + slow neg feedback
Attractor models – noise driven

-- no oscill’n w/o noise
-- double-well potential motivates neural architecture
-- “cross-over”

To do:   LP II (or not) for adaptation model
JR look at Demos
SN-curves, cusps… import to XPP w/ traj

Make Ruben model as oscillator and do AUTO
Check LP IV and LP II

Credit to Nava XXX



Curves of knees (SNs) .. From AUTO

Project onto the a1-a2 plane and show traj.

This is Escape…. Also seen by looking at moving nullclines

Show an example of Release.

Refer to Rodica who has worked this out nicely for Heaviside.
w/ Thms about some structural issues… equivalence of some
models 



Model produces LP-II but …

i. Direct cross-inhibition requires N2 connections.

ii. Multiplicative local inhibition. How? 

iii. Exponential-like distributions…

 

role for 
adaptation…







Obtaining LP-IV in attractor models



Adaptation shapes the distribution. 
Weak adaptation is required.



Dynamical properties

Brown: low stimulation
Black: high stimulation

Activity decreases for stronger stimulus.



Bill Newsome

5 % coherent30 % coherent

Presenter
Presentation Notes
12/14/05, Lecture in Rinzel/Simoncelli neural modelling class
About 1 hr 50 mins, going nice and slowly, up to Slide 42 where would introduce the LC / nonstationary input story 



Energy function model 

Energy function:

Dynamics:

Levelt II



Network based-rate model 

(1,0)

(0,1)

2D energy function

Dynamics:

Recurrent
excitation

Inhibition

Input Noise
Multiplicative
inhibition

Responsible for LP-II:
negative input in the
dominant state!



Model produces LP-II but …

i. Direct cross-inhibition requires N2 connections.

ii. Multiplicative local inhibition. How? 

iii. Exponential-like distributions…

 

role for 
adaptation…



Mutual inhibition with 
slow adaptation 

alternating dominance 
and suppression

IV:

Levelt, 1968





Architecture with a global exc. pool. 

Connections scale linearly with N.

Satifies

 

LP-IV 
and LP-II



In binocular rivalry: present different images to 
each eye.   Do we perceive an averaged image 

or…?



From: Tong et al. (1998)







PLAID DEMO
R Moreno, N Rubin

Transparent + different freq. Transparent + coherent.
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