Dynamics of Perceptual Bistability J Rinzel, NYU

What do we perceive when confronted with ambiguous sensory stimuli?

Bradley et al, 1998

w/ N Rubin, A Shpiro, R Curtu, R Moreno

Binocular rivalry:

alteration of percepts when different steady images are presented to the two eyes

Mutual inhibition with slow adaptation \rightarrow alternating dominance and suppression

Perception and activity:

Normalized percept duration

Properties:

Levelt's Proposition IV: Levelt's Proposition II:

both inputs increase together
dominance time decreases

Dominance Time

one input decreases
OTHER eye's dominance
time increases

Dynamics of Perceptual Bistability

- Oscillator models - inhibition + slow negative feedback
-- noise gives randomness to period
-- non-monotonic T vs stimulus
-- reconsider the experimental findings, or the models
- Attractor model (Moreno)
- noise driven, no oscillation w/o noise
-- double-well potential motivates neural architecture
-- monotonic T vs stimulus
- Oscillator/attractor "regime" in the continuum
-- stats of T distribution constrain parameters

Oscillator Models for Directly Competing Populations

Two mutually inhibitory populations, corresponding to each percept.
Firing rate model: $\mathrm{r}_{1}(\mathrm{t}), \mathrm{r}_{2}(\mathrm{t})$
Slow negative feedback: adaptation or synaptic depression.

Slow adaptation, $\mathrm{a}_{1}(\mathrm{t})$

$$
\begin{aligned}
& \tau \mathrm{dr}_{1} / \mathrm{dt}=-\mathrm{r}_{1}+\mathrm{f}\left(-\beta \mathrm{r}_{2}-\mathrm{ga}_{1}+\mathrm{I}_{1}\right) \\
& \tau_{\mathrm{a}} \mathrm{da}_{1} / \mathrm{dt}=-\mathrm{a}_{1}+\mathrm{f}_{\mathrm{a}}\left(\mathrm{r}_{1}\right) \\
& \tau \mathrm{dr}_{2} / \mathrm{dt}=-\mathrm{r}_{2}+\mathrm{f}\left(-\beta \mathrm{r}_{1}-\varphi \mathrm{a}_{2}+\mathrm{I}_{2}\right) \\
& \tau_{\mathrm{a}} \mathrm{da}_{2} / \mathrm{dt}=-\mathrm{a}_{2}+\mathrm{f}_{\mathrm{a}}\left(\mathrm{r}_{2}\right) \\
& \tau_{\mathrm{a}} \gg \tau, \quad \mathrm{f}(\mathrm{u})=1 /(1+\exp [(\theta-\mathrm{u}) / \mathrm{k}])
\end{aligned}
$$

w/ N Rubin, A Shpiro, R Curtu
Shpiro et al, J Neurophys 2007

Alternating firing rates

Adaptation slowly grows/decays

Levelt's Proposition IV
Dominance Time

Five Regimes of Behavior, Common to Neuronal Competition Models

Shpiro et al, J Neurophys 2006

Five Regimes of Behavior, Common to Neuronal Competition Models

Model with slow synaptic depression.

$$
\dot{u}_{1}=-u_{1}+f\left(-\beta u_{2} g_{2}+I_{1}\right)
$$

$$
\tau_{d} \dot{g}_{1}=1-g_{1}-\gamma u_{1} g_{1}
$$

$$
\dot{u}_{2}=-u_{2}+f\left(-\beta u_{1} g_{1}+I_{2}\right)
$$

$$
\tau_{d} \dot{g}_{2}=1-g_{2}-\gamma u_{2} g_{2}
$$

$$
\tau_{d} \gg \tau, f(u)=1 /(1+\exp [(\theta-u) / k])
$$

E
$\mathrm{V}_{1}=\mathrm{V}_{2}=2$
Regime V

Five Regimes of Behavior, Common to Neuronal Competition Models

Shpiro et al, J Neurophys 2006

Math - adaptation case:
If adaptation is slow and inhib'n is sufficient

$$
\beta>\frac{1+1 / \tau_{a}}{f^{\prime}(\theta)}
$$

then Hopf bifur'cns (2 of them) are supercritical and to anti-phase oscill'n.

If inhibition is strong, given adaptation,

$$
\underline{1 / f^{\prime}(\theta)<\beta-g}<\beta /\left(1+\frac{1}{\tau_{a}}\right)
$$

then also get pitchfork bifurcations.

Fast/Slow Dynamics

Fast-Slow dissection: r_{1}, r_{2} fast variables a_{1}, a_{2} slow variables

Decision making
$\begin{array}{ll}\mathbf{r}_{1} \text { - nullcline } & \mathrm{r}_{1}=\mathrm{f}\left(-\beta \mathrm{r}_{2}-\varphi \mathrm{a}_{1}+\mathrm{I}_{1}\right) \\ \mathbf{r}_{2} \text { - nullcline } & \mathrm{r}_{2}=\mathrm{f}\left(-\beta \mathrm{r}_{1}-\varphi \mathrm{a}_{2}+\mathrm{I}_{2}\right)\end{array}$
a_{1}, a_{2} frozen
$r_{1}-r_{2}$ phase plane, slowly drifting nullclines

RELEASE:

At a switch: suppressed r is very low while system rides near "threshold" of dominant populn's nullcline

Curve of SNs (knees) for Release.

$$
\beta=0.9, I_{1}=I_{2}=0.5
$$

RELEASE:

At a switch: suppressed r is very low while system rides near "threshold" of dominant populn's nullcline

Curve of SNs (knees) for Release.

Switching due to adaptation: release or escape mechanism

θ

Recurrent excitation, secures "escape"

Noise leads to random dominance durations and eliminates WTA behavior.

$$
\dot{n}_{i}=-\frac{n_{i}}{\tau_{n}}+\sigma \sqrt{\frac{2}{\tau_{n}}} \eta(t)
$$

Added to stimulus $I_{1,2}$ s.d., $\sigma=0.03, \tau_{n}=10$

Noise-Driven Attractor Models

w/ R Moreno, N Rubin

ATTRACTOR MODELS

Noise-Driven Attractor Models

w/ R Moreno, N Rubin

LP-IV in an attractor model

Compare dynamical skeletons: "oscillator" and attractor-based models

Dynamical properties of a network with spiking neurons. Simulation results.

Observed variability and mean duration constrain the model.

Difficult to arrange high CV and high $<\mathrm{T}>$ in OSC regime.

With noise
Mean Dominance Time

Favored: noise-driven attractor with weak adaptation - but not far from oscillator regime.

With noise
Mean Dominance Time

Best fit distribution depends on parameter values.
A Adaptation model

Noise dominated

Adaptation dominated

$$
\mathrm{I}_{1}, \mathrm{I}_{2}=0.6
$$

Asymmetries may bias model toward LP-IV.

Gain fn: steep foot favors "escape", LP-IV.

Sigmoidal $\mathrm{a}_{\infty}(\mathrm{u}) \ldots$ favors monotonic T vs $\mathrm{I} .$. . but becomes non-monotonic $\mathrm{w} /$ noise.

Time course of noise that causes switching.

- Reverse correlation: Switch-triggered average of noise.
- On average, positive noise to popul'n that becomes dominant and negative noise to popul'n becoming suppressed.

Positive noise, on average, induces switch from suppressed to dominant.

STAs for Binocular Rivalry: Experiment with moving dots

In Lankheet expt, coherence varies randomly 50% on average move coherently: NW for left eye, NE for right eye

Switch triggered averages.

Note: this is external (sensory input) noise as opposed to internal (brain) noise.

Transparent + different freq.

Transparent + very different frequency.

Percent dominance reflects brain's estimate of probability of depth.

Oscillator models:

- predict new, non-Levelt (LP-IV), behaviors - non-monotonic dominance duration vs I_{1}, I_{2}
- Winner-take-all \rightarrow alternation w/ noise; but non-monotonicity T vs stimulus, remains.
- \rightarrow New experiments ... we see only monotonic, and weakly decreasing \mathbf{T} vs stimulus.

Noise-driven attractor model (Moreno):

- Energy, rate-based and spiking network models conform to LP-IV, LP-II.
- Architecture:
-An excitatory pool receives total external and internal inputs. -Local inhibition and non-linear total input/local rate interaction.
- Extendable to \mathbf{N}-stable phenomena.

Obtaining LP-IV and LP-II in attractor models

$\sum \sqrt{\tau}^{d} \frac{d}{d t} r_{A}=-r_{A}+f\left(\alpha r_{A}-\beta r_{B}+g_{A}-\left(g_{A}+g_{B}\right) r_{A}\right)$
$\tau \frac{d}{d t} r_{B}=-r_{B}+f\left(\alpha r_{B}-\beta r_{A}+g_{B}-\left(g_{A}+g_{B}\right) r_{B}\right)$

$$
g_{A}=g_{B}
$$

$$
g_{B}<g_{A}
$$

Increases residence time for $A_{O N}$ and decrease it for $B_{O N} \ldots$ analogous to LP-II.

Comparison with experimental results

Polonsky et al, 2000 V1, V2, V3a, V4v, in humans (also Lee and Blake, 2002 V1, V2, V3, V4, in humans)

Sheinberg and Logothetis, 1997 STS and IT in monkeys

Reduction of activity during rivalry compared with non-rivaling stimulation

non rivaling vision (n)

RELEASE:
 At a switch: suppressed r is very low while system rides near "threshold" of dominant populn's nullcline

$$
\beta=0.9, \mathrm{I}_{1}=\mathrm{I}_{2}=0.5
$$

Outline
Demos and basic exptl results (Levelt)
Oscillator models - noise gives randomness to period
-- inhib'n + slow neg feedback
Attractor models - noise driven
-- no oscill'n w/o noise
-- double-well potential motivates neural architecture
-- "cross-over"

To do: LP II (or not) for adaptation model
JR look at Demos
SN-curves, cusps... import to XPP w/ traj
Make Ruben model as oscillator and do AUTO
Check LP IV and LP II
Credit to Nava XXX

Curves of knees (SNs) .. From AUTO

Project onto the a1-a2 plane and show traj.
This is Escape.... Also seen by looking at moving nullclines

Show an example of Release.

Refer to Rodica who has worked this out nicely for Heaviside. w/ Thms about some structural issues... equivalence of some models

Model produces LP-II but ...

i. Direct cross-inhibition requires N^{2} connections.
ii. Multiplicative local inhibition. How?
iii. Exponential-like distributions... role for adaptation...

Obtaining LP-IV in attractor models

Adaptation shapes the distribution.

Weak adaptation is required.

Duration (sec)

Dynamical properties

Brown: low stimulation Black: high stimulation

Activity decreases for stronger stimulus.

1. The two alternative forced choice task (TAFC)

Subject is shown one of two stimuli drawn at random, must respond by pushing L or R button. Simple case: visual pattern of dots, fraction $q<1$ moving either to left (cond. 1) or right (cond. 2), $1-q$ moving randomly; q adjusts difficulty.

Bill Newsome

- Behavioral measures: reaction time (RT) distribution, error rate (ER).
- Neural measures: fMRI (humans), direct recordings in visual processing and motor areas (monkeys: MT, LIP, FEF).

Energy function model

Levelt II

Energy function:

$$
E(\Delta r)=\Delta r^{4}-2 \Delta r^{2}+g_{A}(\Delta r-1)^{2}+g_{B}(\Delta r+1)^{3}
$$

Dynamics:

$$
\tau \frac{d}{d t} \Delta r=-4 \Delta r\left(\Delta r^{2}-1\right)-2 g_{A}(\Delta r-1)-2 g_{B}(\Delta r+1)+n(t)
$$

Network based-rate model

ATTRACTOR MODELS

Responsible for LP-II: negative input in the dominant state!

Model produces LP-II but ...

i. Direct cross-inhibition requires N^{2} connections.
ii. Multiplicative local inhibition. How?
iii. Exponential-like distributions... role for adaptation...

Binocular rivalry:

alteration of percepts when different steady images are presented to the two eyes

Mutual inhibition with slow adaptation \rightarrow alternating dominance and suppression

Perception and activity:

Normalized percept duration

Properties:

Levelt's Proposition IV: Levelt's Proposition II:

both inputs increase together
dominance time decreases

Dominance Time

one input decreases
OTHER eye's dominance
time increases

Necker Cube
Look at the green dot. Is it located in the lower left rear or in the lower left front?

Architecture with a global exc. pool.

Satifies LP-IV and LP-II

In binocular rivalry: present different images to each eye. Do we perceive an averaged image or...?

Binocular rivalry

From: Tong et al. (1998)

PLAID DEMO

R Moreno, N Rubin

Transparent + different freq.
Transparent + coherent.

